Origin and early evolution of corner polyhedra
نویسنده
چکیده
Corner Polyhedra are a natural intermediate step between linear programming and integer programming. This paper first describes how the concept of Corner Polyhedra arose unexpectedly from a practical operations research problem, and then describes how it evolved to shed light on fundamental aspects of integer programming and to provide a great variety of cutting planes for integer programming. © 2016 Published by Elsevier B.V.
منابع مشابه
Corner Polyhedra and Maximal Lattice-free Convex Sets : A Geometric Approach to Cutting Plane Theory
Corner Polyhedra were introduced by Gomory in the early 60s and were studied by Gomory and Johnson. The importance of the corner polyhedron is underscored by the fact that almost all “generic” cutting planes, both in the theoretical literature as well as ones used in practice, are valid for the corner polyhedron. So the corner polyhedron can be viewed as a unifying structure from which many of ...
متن کاملSome continuous functions related to corner polyhedra, II
The group problem on the unit interval is developed, with and without continuous variables. The connection with cutting planes, or valid inequalities, is reviewed. Certain desirable properties of valid inequalities, such as minimality and extremality are developed, and the connection between valid inequalities for P(I, u 0) and P+(I, u 0) is developed. A class of functions is shown to give extr...
متن کاملThe Structure of the Infinite Models in Integer Programming
The infinite models in integer programming can be described as the convex hull of some points or as the intersection of half-spaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for finite dimensional corner polyhedra. One consequence is that nonnegative continuous functions suffice to describe finite dimensi...
متن کاملSteinitz Theorems for Simple Orthogonal Polyhedra
We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz’s theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric pro...
متن کاملEffect of Compressive Residual Stress on the Corner Crack Growth
In the present study, plasticity induced crack closure (PICC) concept and three dimensional (3D) finite element methods (FEM) are used to study the effect of compressive residual stress field on the fatigue crack growth from a hole. To investigate the effect of compressive residual stress on crack opening levels and crack shape evolution, Carlson’s experiments were simulated. Crack shape evolut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 253 شماره
صفحات -
تاریخ انتشار 2016